

II Semester M.Sc. Degree Examination, July 2017 (NS-2010-11 Scheme) (Repeaters) CHEMISTRY C-203: Physical Chemistry – II

Time: 3 Hours Max. Marks: 80

Instruction: Answer question number 1 and any five of the remaining.

1. Answer any ten of the following:

(10×2=20)

- a) What are partial motor quantities? Give examples.
- b) Define the terms 'phase' and 'variance' in the phase equation.
- c) Differentiate between different types of ensembles.
- d) Define partition function and explain its significance.
- e) Show that the entropy is always produced in an irreversible process.
- f) State Dulong and Petit's law and mention its limitations.
- g) What are conductance minima?
- h) Give the advantage of a platinized platinum electrode over a plain platinum electrode.
- i) Give the significance of E₁. How is it determined?
- j) Justify the statement that 'The process of corrosion is spontaneous in nature'.
- k) Differentiate between metal-situation and semiconductor solution interface.
- I) Differentiate between activation and concentration over potential.
- 2. a) Derive Duhem-Margules equation.
 - Define the terms 'fugacity', 'activity' and 'activity coefficient'. Discuss the compressibility factor method for the determination of fugacity. (5+7)
- 3. a) Using Stirling approximation calculate inN_xI where N_x is the Avogadro number.
 - b) Compare the important features of Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics.
 - Obtain an expression for the rotational partition function.

(3+6+3)

- 4. a) Discuss the salient features of the Einstein's theory of monatomic crystals. How did Debye modify it?
 - b) Explain the term 'microscopic reversibility' and deduce an expression for Onsager's reciprocity relations. (6+6)
- 5. a) Discuss the thermodynamics of the electrified interface.
 - b) Deduce Butler-Volmer equation related to multi electron systems. (6+6)
- 6. a) Give a brief account of the various forms of corrosion.
 - b) Explain the stern model of the electrical double layer.
 - Discuss the factors which influence the effectiveness of a hydrogen electrode.
- 7. a) Write the likovic equation, explain the terms involved and give its significance.
 - b) Explain the effect of light of semiconductor solution interfaces.
 - Discuss the quantum aspects of charge transfer at electrode solution interfaces. (3+3+6)